3,655 research outputs found

    Robust Filtering and Smoothing with Gaussian Processes

    Full text link
    We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of "system identification" is more robust than finding point estimates of a parametric function representation. In this article, we present a principled algorithm for robust analytic smoothing in GP dynamic systems, which are increasingly used in robotics and control. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail.Comment: 7 pages, 1 figure, draft version of paper accepted at IEEE Transactions on Automatic Contro

    The acute toxicity of thallium to freshwater organisms: Implications for risk assessment.

    Get PDF
    The acute toxicity of Tl(I) to the microalga, Pseudokirchneriella subcapitata, the planktonic crustaceans, Daphnia magna and Daphnia pulex, and early-life stage of the zebrafish, Danio rerio, has been studied according to OECD protocols. Toxicological end-point concentrations for the microalga ranged from 17 μg l(-1) for a 72 h EyC25 (yield inhibition) to 80 μg l(-1) for a 72 h ErC50 (growth inhibition). Daphnia were less sensitive to Tl, with 48 h EC50s of about 1000 μg l(-1) and 1200 μg l(-1) for D. magna and D. pulex, respectively; however, end-point concentrations were reduced considerably (to about 510 μg l(-1) and 730 μg l(-1), respectively) when experiments were repeated in dechlorinated Plymouth tap water (rather than OECD medium). The 96 h LC50 for D. rerio was 870 μg l(-1) but a variety of sub-lethal effects, including enlargement of yolk sac and reduction in heart beat rate, were observed when larvae were exposed to lower concentrations. Based on these results, a predicted no effect concentration (PNEC) for Tl in freshwaters of 0.087 μg l(-1) is proposed. The PNEC is an order of magnitude lower than the only (Canadian) water quality guideline for Tl that appears to exist, and is lower than Tl concentrations reported in freshwaters impacted by historical or contemporary metal mining. Our results are also consistent with previous studies that employ different organisms and end-points in that Tl toxicity is dependent on the concentration of K+, the biogeochemical analogue of Tl+. Accordingly, regulation of Tl in the freshwater environment should factor in the relative abundance of K

    The Detection of Damage and the Measurement of Strain within Composites by Means of Embedded Optical Fiber Sensors

    Get PDF
    Structurally integrated fiber optic sensors hold the promise of improved quality control of composites and “real-time, in-service” monitoring of the loads to which they are subjected and any damage they may sustain. This could reduce overdesign and increase confidence in their use by improving both safety and their economics especially in terms of inspection and maintenance, Figure 1. This would be particularly relevant to the Aerospace Industry where any weight saving has a multiplier effect. The technology of imbedding arrays of optical fiber sensors within advanced composite material structures during their fabrication essentially provides materials with “optical nerves”. Improved quality control would be achieved by monitoring the internal of composites during their manufacture. Also since “in-service” monitoring of structural loads and structural integrity would permit weaknesses to be indicated before they became critical, longer periods could be allowed between costly inspections. When the system is taken out of service for such an inspection, a shorter downtime might be expected since the built-in sensors would have already indicated sites of weakness and their rate of deterioration. A recent overview of fiber optic based “Smart Structures” has been prepared by the author[1]

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell

    Get PDF
    Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline material. Here we use atomic force microscopy (AFM) to image individual glycan chains in peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent to which chains are oriented in a similar direction (orientational order), showing it is much less ordered than previously depicted. Combining AFM with size exclusion chromatography, we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its normal rod shape are long and circumferentially oriented, but when a spheroid shape is induced (chemically or genetically) glycans become short and disordered

    Human Female Genital Tract Infection by the Obligate Intracellular Bacterium Chlamydia trachomatis Elicits Robust Type 2 Immunity

    Get PDF
    While Chlamydia trachomatis infections are frequently asymptomatic, mechanisms that regulate host response to this intracellular Gram-negative bacterium remain undefined. This investigation thus used peripheral blood mononuclear cells and endometrial tissue from women with or without Chlamydia genital tract infection to better define this response. Initial genome-wide microarray analysis revealed highly elevated expression of matrix metalloproteinase 10 and other molecules characteristic of Type 2 immunity (e.g., fibrosis and wound repair) in Chlamydia-infected tissue. This result was corroborated in flow cytometry and immunohistochemistry studies that showed extant upper genital tract Chlamydia infection was associated with increased co-expression of CD200 receptor and CD206 (markers of alternative macrophage activation) by endometrial macrophages as well as increased expression of GATA-3 (the transcription factor regulating TH2 differentiation) by endometrial CD4+ T cells. Also among women with genital tract Chlamydia infection, peripheral CD3+ CD4+ and CD3+ CD4- cells that proliferated in response to ex vivo stimulation with inactivated chlamydial antigen secreted significantly more interleukin (IL)-4 than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated in T cells isolated from these same women 1 and 4 months after infection had been eradicated. Our results thus newly reveal that genital infection by an obligate intracellular bacterium induces polarization towards Type 2 immunity, including Chlamydia-specific TH2 development. Based on these findings, we now speculate that Type 2 immunity was selected by evolution as the host response to C. trachomatis in the human female genital tract to control infection and minimize immunopathological damage to vital reproductive structures. © 2013 Vicetti Miguel et al

    Axion Protection from Flavor

    Get PDF
    The QCD axion fails to solve the strong CP problem unless all explicit PQ violating, Planck-suppressed, dimension n<10 operators are forbidden or have exponentially small coefficients. We show that all theories with a QCD axion contain an irreducible source of explicit PQ violation which is proportional to the determinant of the Yukawa interaction matrix of colored fermions. Generically, this contribution is of low operator dimension and will drastically destabilize the axion potential, so its suppression is a necessary condition for solving the strong CP problem. We propose a mechanism whereby the PQ symmetry is kept exact up to n=12 with the help of the very same flavor symmetries which generate the hierarchical quark masses and mixings of the SM. This "axion flavor protection" is straightforwardly realized in theories which employ radiative fermion mass generation and grand unification. A universal feature of this construction is that the heavy quark Yukawa couplings are generated at the PQ breaking scale.Comment: 16 pages, 2 figure

    Endemic goitre and hypothyroidism in an adult female patient dependent on total parenteral nutrition

    Get PDF
    We present the case of a thirty-year-old female patient who was referred to the endocrinology team with an enlarging goitre and biochemical hypothyroidism. She had been dependent on total parenteral nutrition for the previous six years as a result of intestinal failure thought to be caused by possible underlying mitochondrial disease. The patient also suffers from a Desmin myopathy, and at present, the exact aetiology behind her intestinal failure is not certain. The goitre was smooth and had been enlarging slowly over the previous few months. Thyroid peroxidase antibodies were found to be within normal range. Further analysis of the case showed that twelve months earlier the patients total parenteral nutrition (TPN) feed had been altered as a result of manganese toxicity. The current feeding regimen did not contain a trace element additive which had previously supplied iodine supplementation. A little detective work established that iodine content to the TPN had been reduced, the trace element additive (Additrace) was recommenced providing 1 µmol of iodine per day, equating to 130 µg of iodine. Following this change, thyroid-stimulating hormone levels returned to normal and the goitre quickly reduced in size. We present a rare case of endemic goitre and hypothyroidism in a patient receiving inadequate iodine supplementation through total parenteral nutrition

    Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B

    Get PDF
    Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone
    corecore